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A different game problem with two players (cars), in which one player (car) pursues the other, is considered. The roles of the 
players are fixed, and the functional to be minimized (for player I) and maximized (for player II) is the maximum value of a 
given scalar non-negative function (the performance index) of the phase vector along the trajectory of the dynamical system 
over a fairly long time interval. A zero value of the performance index corresponds to the situation in which the pursuer is behind 
the evader at a given distance from it, and the velocity vectors are codirectional and lie on the same straight line. A detailed 
investigation is presented of the special case in which the car being pursued is at rest, and the pursuer is moving in the plane at 
a velocity of constant magnitude subject to a certain constraint on its turning radius. The game ends when the car is moving in 
a circle of given radius, in which case its velocity vector must point toward the centre of the circle. The relations of the Pontryagin 
maximum principle characterizing optimal open-loop controls are written out and analysed. The main result of the paper is the 
synthesis of an optimal feedback control. © 2005 Elsevier Ltd. All rights reserved. 

To model the control of two or more moving objects under conflict conditions, when the manoeuvring 
objects have to achieve contrary goals and their possibilities are different, wide use has been made 
of the tools of differential game theory, which have seen considerable development over the past few 
decades [1, 2]. The exact solution of problems of differential game theory presents considerable 
difficulties, particularly for non-linear systems. In some cases, in order to devise algorithms for the 
numerical synthesis of controls, it proves useful to consider a simplified problem, whose solution can 
be completed, and then to use the results when proceeding to solve the initial problem. 

In this paper we investigate the limiting case of a two player game problem of pursuit in a plane, 
which reduces the initial game problem to a non-linear optimal control problem. 

1. D I F F E R E N T  G A M E  

The game takes place in a plane. Two players participate: pursuer P (player I) and evader E (player 
II). The velocities of players P and E are constant and equal to 111 and V2; the radii of curvature of the 
trajectories of motion are bounded below by given quantities R 1 and R2, respectively. It is assumed that 
both players, at each instant of time, control the choice of the curvature of their trajectories, using 
information about the actual state of the system in the phase space of coordinates (r, ¢Pl, q02) and 
about the quantities V1, V2, R1 and R2. Here r is the distance between the players, and % (q02) is the 
angle between the velocity vectors of player I (II) and the segment PE. The angle q01 is measured 
counterclockwise and q~2 clockwise (Fig. 1). Angles differing by 2rtn, where n is an integer, are identified. 
The quantities Vk and Rk are assumed to be non-negative; more precisely, V1 - 0, V2 -> 0, R1 > 0, 
R2>0 .  
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An equivalent description of the dynamics of the points P and E comprises points possessing a certain 
mass that control their motion by means of a force perpendicular to their velocity and bounded in 
magnitude. Such a model is not infrequently used to describe the motion of aircraft. 

Arguments analogous to those used previously in [1] show that the dynamics of the relative position 
of the players is described by a non-linear system of three differential equations 

p _-- V2cos(P2-  VlCOS(Pl 

~01 Vlsin % + V2sinqo 2 V 1 V 2 VlsintPl + V2sintP2 (1.1) 
= r - g--~l u, (P2 = -~2 l ) -  r 

and constraints 

}ul ~ 1, Ivl ~ 1 (1.2) 

where u and a) are the control parameters of player P and E. 
By the physical meaning of the problem, the variable r is non-negative, which is in fact a phase 

constraint for system (1.1). This constraint will be taken into consideration in constructing a synthesis. 
The payoff in the game is the quantity 

J[u, v] = nf lnL(r( t ) ,  tPl(t), tP2(t)) (1.3) 
t>_o 

where r(t), qh(t), q)2(t) is the trajectory of system (1.1) corresponding to the given controls u and v of 
the players, and the performance index L has the form 

2 2 
L(r, tpl, tp2 ) = AI(PI + A2(P2 + A 3 ( r -  R) 2 (1.4) 

where A1, A2, A3 and R are given non-negative constants. The controls u and a) may be open-loop or 
in synthesis form; the main condition imposed upon them is that system (1.1) should be solvable. The 
function L(r,  tpl , qo2) may be treated as the probability that player II will be hit by player II from the 
position (r, q01, 92)- The lower the value of the function L at a given time, the more preferable player I's 
position for hitting player II. Hence player I will try to choose this strategy so as to minimize J[u, a~], 
while player II, on the contrary, will try to maximize it. Obviously, the most satisfactory time to finish 
the game from the standpoint of player I corresponds to the position (R, 0, 0), which gives the perfor- 
mance index L a global minimum equal to zero. From the physical standpoint, this position corresponds 
to the situation in which the pursuer is behind the evader at a distance R from him, and the players' 
velocities are codirectional and lie on the same straight line. 

We will consider the problem of finding the optimal strategy u*(r, (Pl, ~P2, t) of player I and the 
corresponding guaranteed value of the functional J[u, ~] 

L* = minmaxJ[u, v] = m i n m a x m i n L ( r ( t ) ,  tpl(t), (P2(t)) (1.5) 
lul-< lfvl-< 1 1.1 <- llvl-< 1 t>_0 

The function L* (the value of the game) depends on the initial position of the system (r0, %0, q00). It 
will suffice to consider maximization with respect to v in (1.5) for open-loop controls v(t), Iv(t) I -< 1. A more 
detailed formulation of the game problem is not given, since a simplified version will be considered 
below. 

Let us determine the number of essential parameters of system (1.1) on the assumption that R1 > 0, 
1/2 > 0. We make the following replacement of variables 

r' = r ~ = V2 V '  = V V 2 / R 2  
R--~l ' V'--~l ' V'-~l ' g =  V ff R , ' )~ > 0 , g > O (1.6) 
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Then system (1.1) takes the form 

= ~,coscpz - cosc h 

sing h + ~,sinq02 
(01 = 

F 
- u ,  (02 = gv  

sintpl + ~,sintP2 (1.7) 

with two essential constants )~ and g instead of the four in system (1.1). the constraints (1.2) are retained. 
The quantity R in function (1.4) becomes R'  = R/Rv  

The game problem we have formulated, with a functional of the minimum type, is one of the most 
difficult problems of differential game theory, since the Bellman optimality principle is not satisfied 
for it, and the corresponding dynamic programming problem reduces to a Bellman equation with an 
unknown boundary. 

In this paper the problem will be considered with limiting values of the parameters, so that it will be 
possible to investigate the special case in which the velocity of the evader is significantly less than that 
of the pursuer (1,12 ~ V1). 

Let us assume that the following three parameters in relations (1.4) and (1.7) vanish 

~, = 0,  ~ = 0 ,  A 2 = 0 (1.8) 

In physical terms, this limiting case means that the evader is at rest, and his control vanishes identically 
over the interval of motion. It can easily be shown that with these simplifications an infinite set of 
strategies u*(t) of the pursuer exists that will steer the system to the position (R, 0, 0) best for the latter 
player. Indeed, from any initial position, the pursuer must move away a sufficient distance from the 
evader, change direction in such a way that % = 0, q02 = 0, and then proceed to the point indicated 
along a straight line (see Fig. 2). 

Note that on taking the limit (1.8) the game problem reduces to an optimal control problem for one 
player. When that is done, since an infinite set of strategies u* (t) exists (in the sense of (1.5)) that make 
the functional L a global minimum equal to zero, it seems reasonable to consider a new, additional 
functional and look for a strategy that is optimal in the sense of the new functional. We shall consider 
as the additional functional the time needed to reach the point(R, 0, 0). 

2. F O R M U L A T I O N  OF T H E  O P T I M A L  C O N T R O L  P R O B L E M  

Suppose the motion of a non-linear controlled object in a two-dimensional phase space is described 
for t _> to by the following system of equations 

sinxz 
"Ill = --CO•X2, "~2 = -- U + (2.1) 

Xl 

where x I and x2 are the coordinates of the phase vector of system (2.1), and u is a control parameter 
satisfying the constraint 

lul < 1 (2.2) 

It is assumed that the state of the object at the initial time is given: 

x,(to) = x °, x2(to) = x~ (2.3) 
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System (2.1), (2.2) describes the differential game (1.7), (1.2) with the simplifications (1.8), when the 
game degenerates to an optimal control problem. Then xl is the distance r between the players, and xl 
is the angle % (Fig. 1). Note that if xl = 0, the variable x2 becomes meaningless, and system (2.1) has 
a singularity which disappears when other variables are used, such as Cartesian coordinates in absolute 
space (see [6]). Below, when constructing an optimal synthesis, such variables will also be used. 

The class of admissible controls will be the set of piecewise-continuous scalar functions u(t) satisfying 
constraint (2.2). 

It is required to find a time-optimal control u* that will steer the system from some initial state (2.3) 
to the target point O(R, O) 

x l ( t l )  = R,  x 2 ( t l )  = 0 ( 2 . 4 )  

and the corresponding trajectory and time T = t 1 - t 0. 

3. S Y N T H E S I S  OF T H E  C O N T R O L  

In this section a certain synthesis of the control, whose optimality will be proved later, will be proposed. 
We will first carry out some auxiliary constructions using the Pontryagin Maximum Principle [3, 4], 

and then describe the proposed synthesis. 
Let ~1 and ~2 denote the variables conjugate to xl and x2. The Hamiltonian of system (2.1) is 

H(t, lit, x, u) = - ~1 c°sx2 - ~t2u + ~ 2 ~  
sinx 2 

xl (3.1) 

By maximizing the Hamiltonian subject to the constraint (2.2), we deduce that the optimal control 
u* has the form 

1, ~g2<0 

u*(t) = -1,  1112 > 0 

0, where O~ [ - 1 , 1 ] ,  ~g2 = 0 

(3.2) 

Let us determine what values the quantity 0 may take. The canonical equations of the maximum 
principle may be written in the form 

sinx 2 
J~l = --COSX2 = f l ( X 2 )  ' 3C2 = - - U + ~  = fE(Xl, XE, U) 

X 1 

sinx 2 cosx 2 
~1/1 = ~1/2- - - -~ ,  lq/2 = -- ~1/1 s i n x  2 - i g 2 ~  

X 1 x1 

(3.3) 

If xg2 - 0, then 42 -~ 0, and it follows from the last equation of (3.3) that on such a trajectory 
~glsin(x2) -= 0. Since the maximum principle requires that % and xg 2 should not vanish simultaneously, 
it follows from the continuity of the function x2(t) in the interval [to, tl] that x2(t) - nn, where n is an 
integer. Then 22(0 = 0 and it follows from the second equation of (3.3) that if xg2 - 0 then u = 0. This 
means that 0 may take the single value zero. The corresponding trajectories are conveniently interpreted 
in the original space. For example, if player P uses the constant control u = I over some time interval, 
then the point P will move clockwise along the unit circle; if u = -1, it will move counterclockwise, and 
if u = 0, it will move along a straight line. 

Thus, the optimal trajectories in absolute space must consist of arcs of circles of unit radius and of 
straight lines. Moreover, if the point is moving along a straight line, the phase coordinate x2 is equal 
to nn, where n is an integer, which implies motion of player P along the line connecting the players. 
An analogous class of trajectories was used in [5] to construct attainability regions. 

Since the functions fl  and f2 in Eqs (3.3) are 2n-periodic in x2, the phase portrait of the optimal 
trajectories must be 2rc-periodic in that variable. 

We also note that by symmetry and the properties of the functions fl  and f2 

f l ( 2 ~ - x  2) = f l ( X 2 ) ,  f 2 ( X l , 2 ~ - X  2 , - u )  = - f 2 ( x l ,  X2, U) 
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it follows that the optimal trajectories considered in the interval [0, 27t] are symmetrical about the straight 
linex2 = ~t, which, as will be shown later, is a singular surface in the terminology of [1]. It will therefore 
suffice to synthesize a solution in the region 

G = {(Xl, X2):O<-x2<_n, Xl>_O} 

Denote the half-lines {X 2 = 0, X 1 -> 0}, {X 2 = /I;, X 1 _> 0} by m and l, respectively. It follows from the 
above arguments that all straight sections of the optimal trajectories in the region G belong either to 
m or to I. 

Let C + and C- denote circles of unit radius in absolute space, which are trajectories of the motion 
of player P when the latter, beginning at time to, applies the constant control u = 1 and u = -1, 
respectively. Let us find the set of initial positions (2.3) of player P from which the player may reach 
the point O moving along a circle C + or C-. 

To fix our ideas, suppose player P, applying the constant control u = 1 from some initial position 
(2.3), reaches point O at time tl. Then the circles C + and D (with centre at the point E and radius R) 
intersect at O, where they have perpendicular tangentsf  and d, respectively (Fig. 3). It follows that 

IMEI z = IMOI2+ IOEI 2 = 1 +R 2 

Consider the triangle PEM for which 

[PE[ = x 1, IMEI 2= I + R  2, IMP[ = 1, Z M P E  = M 2 -  x 2 

By the cosine theorem, 

2 _ R 2 x 1 - 2x 1 sinx 2 = 0 

whence it follows that 
+ 

XI (X2)  = XI(X2,  R )  (3.4) 

Here and henceforth, we are using the notation 

x;(x2, R) = sinx 2 + Jsin2x2 + R 2, X-l(X2, R ) = -sinx 2 + Jsin2x2 + R 2 

Reasoning similarly for the case u = -1, we obtain 

X I(X 2 )  = x i ( x 2 ,  R )  ( 3 . 5 )  

Denote the curves defined by Eqs (3.4) and (3.5) by 7 + and y-, respectively. They divide the set 
G' = G\(m u l) into three subsets (Fig. 4) 

+ + 
G 1 : x 1 > x I ( x2 ,  g ) ,  6 2 : Xl (X2,  R )  _< x 1 < x I (x2 ,  g ) ,  6 3 : x !  < x i ( x 2 ,  R )  
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The proposed synthesis will be described in the set G. In the constructions we shall use trajectories 
of the point P in absolute space, but the phase portrait will be given in coordinates (xl, x2). 

By construction, the points of the set G 1 will have the property that a trajectory exists consisting of 
an arc of the circle C + and a segment of the half-line m that takes player P to the target point. We will 
therefore assume in the proposed synthesis that in the region G 1 we have u = 1. 

For initial points in the set G2, the trajectories described above do not enable us to bring player P 
to the target point, because of the proximity of the circles C ÷ and D (Fig. 3). Here success will be achieved 
by using the control u = -1 until the curve 7 + is reached, and there the control is already known. In 
the region G2, therefore, we put u = -1. 

The situation for the set G 3 is more complicated. Because the players are close together here, one 
must first increase the distance between them. One possible manoeuvre guaranteeing the rapid motion 
of player P away from player E will consist of an arc of the circle C + and a segment of the half-time l. 
Moving in a straight line, player P will, after some time, reach the curve 7 +, along which he will then 
reach the target point O. With that manoeuvre, u = -1 in the set G3. 

Consider the points L(0, 0), O(R, 0), S(O, n), B(R, ~). The points L and O (S and B) divide the half- 
line m (the half-line l) into two parts: a segment LO (segment SB) and a half-line [3 (half-line rl). We 
put u = 0 i fP ~ SB u [~. But i fP ~ LO u 13, there are two possibilities: u = 1 or u = -1. In the terminology 
of [1], the segment SB and half-line [~ are universal surfaces, while LO and the half-line TI are dispersal 
surfaces. 

The synthesis thus obtained is illustrated in Fig. 5. 
The maximum principle was used in [6, 7] to solve a similar time-optimal problem, that of steering 

system (2.1), (2.2), but in different phase variables, from the initial position (2.3) to the originxffq) = 0, 
x2(h) - 0; the optimal synthesis obtained, expressed in coordinates (Xl, x2), has the form shown in 
Fig. 6; it is identical with the synthesis proposed here in the case when R - 0 in (2.4). Similar problems 
were considered in [8, 9]. Some elements of the synthesis proposed here were constructed in [1]. 

4. P R O O F  OF T H E  O P T I M A L I T Y  OF T H E  S Y N T H E S I S  

We shall show that the synthesis constructed in Section 3 satisfies the necessary optimality condition 
of the non-linear problem - the Pontryagin Maximum Principle. 

Let q ~ G be an arbitrary but fixed point, and consider the process corresponding to the synthesis, 
steering player P from that point to the target point O at time tq. To prove the validity of the maximum 
principle, it will suffice to exhibit a vector-valued function ~(t), defined in the interval [to, tq], such that 
(3.3) holds in that interval and the following two conditions hold there 

V(t)¢5 (4.1) 

u = argmaxH(t, lg(t), x(t), u(t)) = -sign(~2(t))  
I.1-< l 

(4.2) 

By suitable normalization of the vector of conjugate coordinates, we can obtain from (3.1) 

H(t, ~t(t), x(t), u(t)) = 1, t ~ [to, tq] (4.3) 
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Let  us find a value of the function ~ in the time interval over which u = 0 (corresponding to the 
motion of player P along either the half-time 13 or the segment SB). It follows from the previous discussion 
that in that case ~2 = 0. Then, taking into account that the Hamiltonian is constant, we deduce that 
f o ru  = 0 

- g l  c°sx2 = 1 (4.4) 

It follows from this equality that gt 1 = -1 if P e 13, and g l  = 1 if P c SB. 
The point q in G is either in one of the sets G1, G2, G3, or q ~ [3 u SB. The segment L O  and half- 

line q need not be considered, since they do not contain trajectories. 
Let  q E G3. Then the trajectory is the union of an arc of the circle C-, a segment of the half-line l 

and an arc of the circle corresponding to the curve y+. Let  N denote the point at which the trajectory 
of motion switches from the circle C- to the half-line l. Assume that player P reaches the point N at a 
time tN, to < tN < tq, and the point B at a time tB, tN < tB < tq. As shown previously, the value of the 
function g in the interval [tN, tB] is known 

g( t )  = 10 , if t s [t N, t B] (4.5) 

We will show that the function gt(t), defined in [te, tq] as the solution of the Cauchy problem for system 
(3.3) with initial condition 

satisfies conditions (4.1) and (4.2). 
Since on the curve 7 + the control is u = 1, it follows from (3.2) that the validity of condition (4.2) is 

actually equivalent to 

gt2(t ) < O, t ~ (ts, to) (4.7) 

This automatically implies condition (4.1). 
Let  t~/2 denote the time t = (tq + te)/2. It can be shown that at t = t~/2 we have the equality 

x2(t~t/2 ) = 7~/2. Hence, in view of relations (3.4) and (4.3), it follows that 

1 
V2(tn/z) = - 1 4 "1 + R - z  (4.8) 

The function ~2(t) has no zeros in the intervals (to, t~/2) and (t~/2, tq). 

We will prove that ~2(t) has no zeros in the interval (t~, t~/2). Consider the function in a right half-neighbourhood 
of the point t = t B. It follows from relations (3.3) and (4.6) that +2(tB) = 0. Evaluating the second derivative 

sinx 2 
~2(t) = ~J1 UCOSX2 -- ~ 2  u (4.9) 

X 1 

taking condition (4.6) into account, we obtain ~ 2 ( t B )  = - -1 ,  that is, the function/g2(t ) decreases monotonically in 
some neighbourhood of the point t = tB. Suppose ~2(t) has N zeros in the interval (tB, t~/2), where N > 0. Suppose 
the first zero is reached at a point t', tB < t' < t~/2. We then obtain from (4.3) that 

vl(r)  = - ~  (4.10) 
COSX 2 

Hence, since over this time intervalx2 e (~/2, 7t.), it follows that ~l(t') > 1. On the other hand, using Eqs (3.3), it 
can be shown that for t E (tB, t') it is true that/I/a(t ) < 0. Then, by condition (4.6), ~l(t') < 1. This contradiction 
shows that the function ~2(t) has no zeros in the interval (tB, t~/2). 

We will show that ~2(t) has no zeros in the interval (t~/2, tq). To prove this, we transform system (3.3) to the 
independent variables x2. This may be done, since it follows from relations (3.3) and (3.4) that 

3~ 2 < 0 ,  t ~ [tB, tq] (4.11) 
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After this change of independent variable, system (3.3) becomes 

X 1 COS X 2 

x I - sinx 2 

2 sin x 2 ~J 1X 1 sin x 2 cos  x 2 

Xl(X I _ sinx2), ~2 - x l_  sinx 2 +V2xl_ sinx 2 

(4.12) 

Setting R = 0 in (3.4), we have xl(x2) = 2sinx2. System (4.12) may be solved analytically in this case. Functions 
~ ,  ~ solving the system have the form 

Hence it follows that 

~/l*(X2) =--COSX2, V2*(X2) = - 2 s i n 2 x 2  (4.13) 

IVl*(x2)l _< 1, x 2 ~ [0, rt] (4.14) 

We will show that the following estimate holds 

~I/I(X 2) --> ~1/1~ (X2), X 2 ~ [0, re] (4.15) 

Consider the function A(x2) = ~l(xz) - ~(x2),  setting R > 0 in (3.4). It follows from relations (3.3), (4.6) and 
(4.13) that A(rc) = 0,/k(~) = 0. After evaluating the second derivative, we obtain }X(rc) = 1. 

Suppose that for some xz, the inequality A(x2) < 0 holds. Then a point xz = x~, x~ ~ (0, rt) exists, at which 

A(x '  2) = O, A(x'2) >0 (4.16) 

Let us evaluate/k(x~) using system (4.12). To do this, we use equality (4.3) to express ~e in terms of ~1 and 
substitute into the second equation of (4.12). Next, substituting (3.4) into the resulting equality, we find that 

• f 
. T Snl X 2 

~t/l(x2) = (1 + VlCOSX'2) . 2 , R 2 ( 4 . 1 7 )  
sin x 2 + 

Taking into account that ~l(X~) = ~¢~(x~), we deduce from relations (4.13) and (4.17) that 

A(x2) - R2sinx'2 

sin2x2 + R 2 

Sincex~ ~ [0; ~], it follows from this equality that A(x~) < 0, contradicting the inequality in (4.16). 
Suppose that the function ~2(t) vanishes in the interval (t~/2, tq) at t = t", tq < t" < tz/2. Then, using equality (4.3), 

we obtain ~l(t ')  < -1, which contradicts estimate (4.15). 

We will now prove that in the interval [to, tN] the function ~(t) ,  as a solution of the Cauchy p rob lem 
for system (3.3) with boundary  condit ion 

rF; ll rill I 
where xN is the distance between the players at point  N, also satisfies conditions (4.1) and (4.2). Since 
in the region G 3 we have u = -1,  it follows f rom (3.3) that  it will suffice to show that  

~l'2(t ) > O, t E (to, iN) (4.19) 

This will automatically imply condit ion (4.1). 
Consider  the funct ion g2(t) in a left hal f -neighbourhood of  the point  t = t N. By relations (3.3), (4.9) 

and (4.18), we have 

qte(tN) = 0, ~t2(tN) = 0, ~ 2 ( t u )  = 1 (4.20) 

Hence  it follows that  the function ~t2(t ) is positive in some left ha l f -neighbourhood of  the point  tU. 
Ifx2(t0) > ~/2, the technique used to prove inequality (4.19) is analogous to that  used for  the case 

t e (ts, t~/2). 
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Letx2(t0) < re/2. Let %/2 denote the time t at whichx2('c~/2) = ~/2. Using relation (4.3), it can be shown 
that at this point ~t2(%/2) > 0. 

Suppose the zero of the function ~te(t ) in the interval (to, "c~/2) closest to the point %/2 is at t = "Co, 
to < z0 < "c~/2 (Fig. 7). The, by virtue of relations (3.3), (4.3) and (4.9), we obtain 

~/2('170) = 0, ~/2('170) = tgx  2, ~2(~0) = 1 (4.21) 

It follows from relations (4.20) and (4.21), by the continuity of the function (ti2(t), that it has at least 
two zeros in the interval (%, tu). Suppose the first zero of qie(t ) is at the point t = "c 

~02('0 = 0 (4.22) 

(Fig. 7). Let us find the value of Vz(t) at t = "c. By equalities (4.9) and (4.22), we have 

ql('[7) = ~!/2('1~ ) s inxz / (x  1 COSX2) (4.23) 

Substituting this expression into Eq. (4.3), we obtain 

Hence, by (3.3) and (4.23), it follows that 

V2(x) = 1 (4.24) 

= - l / ( x  I cosx2) (4.25) 

On the other hand, equalities (4.21) and (4.22) imply the estimate 

~tz(X) > 0 (4.26) 

By (4.25) and (4.26), we have z > "c~/2 and, using (4.23), we obtain 

~l(x)  < 0 (4.27) 

It follows from (4.20), (4.24) and (4.26) that t = "~', "c < "c' < tN exists for which 

V2(~') = 0 (4.28) 

Of all possible "c', choose that closest to the point t = x (Fig. 7). By virtue of relations (3.3) and (4.28), 
we obtain 

~l 1 ('~') = --~I2COSXz[(X 1 sinx 2) 

Consequently, ql('c') > 0. It then follows from inequality (4.27), by the continuity of the function gl(t), 
that t = "c" exists (Fig. 7) such that ~fi(z") = 0. Hence, by relation (4.3), it follows that 

V2('~") = 1/(1 + sinxz/xl) 

Then 

~2('c") < 1 (4.29) 

But it follows from relations (4.26) and (4.28) that 

~2( t )  > 0, t ~ (% x') (4.30) 

which, by equality (4.24), contradicts inequality (4.29). 
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The technique for defining the function ~(t) in the remaining cases of the position of q and G is 
analogous. 

It can be shown that the synthesis constructed in the region G satisfies all the regularity conditions 
of [4], with the exception of the condition that the time of motion to the target point O must be 
continuous ("condition E"). In the terminology of [4], the sets G l \ y  +, G2\Y- , G3, y+, f ,  SD and [3 are 
then cells of the first kind, and the points O and B are cells of the second kind. Condition E fails to 
hold on the arc y+ at x2 e [0, re/2) (Fig. 5). 

We now use some additional constructions in the domain G. Fix an arbitrary number e e (0, R). Using 
Eq. (3.5), which defines the curve y+, we construct a curve y+~, replacing R in (3.5) by the quantity 
R' = R - e. Let GE denote the interior of the set bounded by the curves l(+, y- and y+ and the half-line 
x2 = ~/2 (Fig. 8). It is not difficult to verify that all the conditions for regular synthesis are satisfied on 
the set G\G~. By a well-known theorem (in [4, (3.19)]) and the arbitrary nature of ~, it follows that the 
synthesis is optimal. 

5. C O N C L U S I O N  

Thus, the optimal control problem obtained as a simplification of the problem of differential game theory 
has been solved. This problem may now be developed in two directions: (1) using the synthesis just 
obtained in the initial problem as an approximate control for player I; (2) applying the method of 
continuation with respect to the parameter V2 to solve more complicated optimal control problems, in 
particular, for the three-dimensional problem, in which it is also assumed that player II is motionless, 
but the orientation of his velocity vector is given. 
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